Thursday, September 13, 2012

Boiling water without bubbles: Researchers engineer special surface, allowing water to boil without producing bubbles

ScienceDaily (Sep. 13, 2012) ? Every cook knows that boiling water bubbles, right? New research from Northwestern University turns that notion on its head.

"We manipulated what has been known for a long, long time by using the right kind of texture and chemistry to prevent bubbling during boiling," said Neelesh A. Patankar, professor of mechanical engineering at Northwestern's McCormick School of Engineering and Applied Science and co-author of the study.

This discovery could help reduce damage to surfaces, prevent bubbling explosions and may someday be used to enhance heat transfer equipment, reduce drag on ships and lead to anti-frost technologies.

Published Sept. 13 in the journal Nature, the research outlines how a specially engineered coated surface can create a stable vapor cushion between the surface and a hot liquid and eliminate the bubbles that are created during boiling.

This phenomenon is based on the Leidenfrost effect. In 1756 the German scientist Johann Leidenfrost observed that water drops skittered on a sufficiently hot skillet, bouncing across the surface of the skillet on a vapor cushion or film of steam. The vapor film collapses as the surface falls below the Leidenfrost temperature. When the water droplet hits the surface of the skillet, at 100 degrees Celsius, boiling temperature, it bubbles.

To stabilize a Leidenfrost vapor film and prevent bubbling during boiling, Patankar collaborated with Ivan U. Vakarelski of King Abdullah University of Science and Technology, Saudi Arabia. Vakarelski led the experiments and Patankar provided the theory. The collaboration also included Derek Chan, professor of mathematics and statistics from the University of Melbourne in Australia.

In their experiments, the stabilization of the Leidenfrost vapor film was achieved by making the surface of tiny steel spheres very water-repellant. The spheres were sprayed with a commercially available hydrophobic coating -- essentially self-assembled nanoparticles -- combined with other water-hating chemicals to achieve the right amount of roughness and water repellency. At the correct length scale this coating created a surface texture full of tiny peaks and valleys.

When the steel spheres were heated to 400 degrees Celsius and dropped into room temperature water, water vapors formed in the valleys of the textured surface, creating a stable Leidenfrost vapor film that did not collapse once the spheres cooled to the temperature of boiling water. In the experiments, researchers completely avoided the bubbly phase of boiling.

To contrast, the team also coated tiny steel spheres with a water-loving coating, heated the objects to 700 degrees Celsius, dropped them into room temperature water and observed that the Leidenfrost vapor collapsed with a vigorous release of bubbles.

"This is a dramatic result and there are many applications in which a vapor-loving, water-hating surface is beneficial," Patankar said.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Northwestern University. The original article was written by Erin White.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Ivan U. Vakarelski, Neelesh A. Patankar, Jeremy O. Marston, Derek Y. C. Chan, Sigurdur T. Thoroddsen. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 2012; 489 (7415): 274 DOI: 10.1038/nature11418

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_technology/~3/HT7LiC1gOkQ/120913132917.htm

kepler 22 b kepler 22 b st nicholas st nicholas mindy mccready mindy mccready cliff harris

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.