Thursday?s Lunch Menu Corn dog, mac & cheese, potato chips, ice cream single serve novelty. Friday?s Lunch Menu Sloppy joe sandwich, steak cut french fries, fresh watermelon wedge, brownies.
The Session III?Day Camp participants plowed through Wednesday?s activities, taking their energy level to a new high in the multiple gyms across campus.
There were plenty of individual highlights on the courts, helping several teams to important victories.
Texas, despite questionable officiating that has plagued the entire camp, was able to hold on for a one-point victory over Michigan.? The Wolverines missed multiple free throw and layup attempts in the closing seconds and a costly turnover with time running out proved to be too much to overcome.? The Longhorns celebrated the emotional victory with class and dignity before exchanging the customary postgame handshakes.
In the Olympic Division, Spain was forced to net an overtime victory over Team USA.? Brady Vance knocked down the game winner in the extra session after the Americans had rallied from a four-point deficit in the final 30 seconds.? The contest did included a controversial 10-second call by commissioner Pat Idstein, but an appeal has yet to be filed.
Team USA was able to earn a measure of revenge, proving cosmic justice is real, as Logan Rauter knocked down a game-winning hoop against Venezuela.
Camp Director Jamie McNeilly held an impromptu post-camp meeting with his senior advisory board in the men?s basketball offices, but only offered ?no comment? when asked about the agenda by the Daily Buzz staff.? Speculation is swirling on the message boards it was about an overhaul of the officiating staff.
CHAMPIONSHIP FRIDAY SCHEDULE:? Championship Friday features tournament action in all three divisions.? Game times for the opening rounds are 9:15 a.m., 9:35 a.m., 9:55 a.m. and 10:15 a.m. at each gym location on campus.? Consolation and championship games, all played in the Al McGuire Center, are slated for 12:45 p.m. and 1:15 p.m., respectively.? Brackets will be posted to the team?s official Facebook page (/MarquetteMensBB) by 7 p.m. on Thursday night and will be updated throughout the day on Friday.
CAMP STORE: Check out the official Camp Store on the main concourse level of the Al McGuire Center. Food, drinks and MU gear will be available. Campers will be able to purchase ?camp cash cards? for various dollar amounts so they don?t have to worry about having cash. The ?Camp Combo? returns and features a T-Shirt/Shorts for $35 or headband/wristband duo for $12.
NEW YORK (AP) -- A look at the 10 biggest volume gainers on Nasdaq at the close of trading:
Camco Financial Corp. : Approximately 927,000 shares changed hands, a 3,814.1 percent increase over its 65-day average volume. The shares rose $.45 or 11.4 percent to $4.35.
CardioNet Inc. : Approximately 8,870,800 shares changed hands, a 1,102.7 percent increase over its 65-day average volume. The shares rose $2.09 or 38.2 percent to $7.56.
Daegis Inc. : Approximately 108,800 shares changed hands, a 1,076.0 percent increase over its 65-day average volume. The shares rose $.21 or 17.4 percent to $1.40.
First Capital Inc. : Approximately 5,700 shares changed hands, a 1,028.5 percent increase over its 65-day average volume. The shares fell $.08 or .4 percent to $20.60.
Ignite Restaurant Gp : Approximately 866,400 shares changed hands, a 1,150.2 percent increase over its 65-day average volume. The shares fell $2.33 or 12.7 percent to $16.01.
Mackinac Financial Corp. : Approximately 19,900 shares changed hands, a 953.5 percent increase over its 65-day average volume. The shares fell $.01 or .1 percent to $9.10.
Optimer Pharmaceuticals Inc. : Approximately 10,560,600 shares changed hands, a 956.7 percent increase over its 65-day average volume. The shares fell $.78 or 5.9 percent to $12.51.
Reliv International Inc. : Approximately 794,700 shares changed hands, a 2,586.9 percent increase over its 65-day average volume. The shares rose $.66 or 22.0 percent to $3.66.
Riverbed Technology Inc. : Approximately 25,067,900 shares changed hands, a 876.8 percent increase over its 65-day average volume. The shares fell $1.90 or 10.8 percent to $15.64.
Universal Stainless & Alloy Products Inc. : Approximately 296,300 shares changed hands, a 940.6 percent increase over its 65-day average volume. The shares fell $.76 or 2.9 percent to $25.80.
First experimental signs of a New Physics beyond the Standard ModelPublic release date: 31-Jul-2013 [ | E-mail | Share ]
Contact: Joaquim Matias matias@ifae.es 34-670-570-708 Universitat Autonoma de Barcelona
If the findings are confirmed, this will be the first direct proof of New Physics, a more general theory than the current Standard Model of elementary particles
The Standard Model, which has given the most complete explanation up to now of the universe, has gaps, and is unable to explain phenomena like dark matter or gravitational interaction between particles. Physicists are therefore seeking a more fundamental theory that they call "New Physics", but up to now there has been no direct proof of its existence, only indirect observation of dark matter, as deduced, among other things, from the movement of the galaxies.
A team of physicists formed by the professor of Physics at Universitat Autnoma de Barcelona (UAB) Joaquim Matias, Javier Virto, postdoctoral researcher at the same university, and Sebastien Descotes Genon, from the Centre National de la Recherche Scientifique (CNRS) / Universit Paris-Sud, has predicted that New Physics would implie the existence of deviations in the probability of a very specific decay of a particle, the B meson. Detecting these small deviations through an experiment would be the first direct proof of the existence of this fundamental theory.
On 19 July of this year, at the EPS 2013 international conference on particle physics in Stockholm, scientists at the LHCb detector, one of the large experiments being conducted by the CERN's LHC accelerator, presented the results of the experimental measurements of the B meson decay. The measurements showed deviations with respect to the predictions of the Standard Model that were previously calculated by UAB and CNRS researchers. The team of scientists have prooved that all these deviations show a coherent pattern and that has allowed them to identify their oringin from a unique source.
The results of their analysis point to a deviation from the Standard Model prediction of 4.5 sigmas. If confirmed, this is a major event, since scientists regard 3 sigmas as "scientific proof" of New Physics and 5 sigmas as a "discovery".
"We must be prudent, because more studies and more experimental measurements will be needed for confirmation", explains Joaquim Matias, "but if they are confirmed this is the first direct proof of New Physics, a more general theory than the current Standard Model". "If the Higgs completed the Standard Model puzzle, these findings could be the first piece in an even bigger puzzle, adds Dr Matias.
The researchers claim that one of the New Physics models that could explain these results would be the one that postulates the existence of a new particle named Zprima, "but there could be lots of compatible models", points out Dr Matias.
The findings are so interesting that scientists at the other main LHC experiment, the CMS detector, want to take these measurements. The CMS has invited Dr. Matias to explain the theoretical details in a seminar to see it the results can be corroborated. At the same time, LHCb is also adding new data to improve the statistics and confirm the measurements next March.
Also participating in the study were Javier Virto, from the UAB's Department of Physics, and Sebastien Descotes-Genon from the University of Paris-Sud 11.
Beyond the Standard Model
For years, particle physicists have known that the theory they use, the Standard Model, despite being a very successful model in all tests carried out so far, has significant deficiencies such as lack of a candidate for dark matter. In addition, it has other problems such as the so-called fundamental problem of hierarchies or the matter-antimatter asymmetry of the universe.
Two of the central goals of the Large Hadron Collider (LHC) at CERN (Geneva) are finding the Higgs boson and finding what is called New Physics, a more fundamental and general theory than that of the Standard Model in which the latter would be just one particular case. Just a year ago, the Higgs boson was discovered, but the particle seems to fit perfectly into the Standard Model and currently gives us no clues regarding New Physics.
Results presented in the EPS 2013 conference
At CERN there are four experiments, four large detectors (ATLAS, CMS, LHCb, and Alice) that record collisions between particles so that scientists can study their behaviour. The LHCb detector is designed to study the behaviour of quarks and what are known as rare decays, which are very infrequent.
On 19 July of this year, at EPS 2013, the European Physics Society's International Conference on Particle Physics, in Stockholm, Dr. Matias presented the theoretical predictions of his research team on one of these decays: that of a B meson, formed by a b quark and a d antiquark, into a pair of muons and a particle called K*. The UAB and CNRS researchers calculated and predicted how this decay should work and how it should change in different New Physics scenarios.
Shortly afterwards, an experimental physicist from the LHCb detector, Nicola Serra, presented at the same conference the first completed experimental results of that decay. Surprisingly, the experimental measurements were consistent with the deviations predicted by Joaquim Matias and his collaborators. For the first time, deviations of this type were consistent with theoretical predictions based on the presence of contributions that transcends the Standard Model.
###
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
First experimental signs of a New Physics beyond the Standard ModelPublic release date: 31-Jul-2013 [ | E-mail | Share ]
Contact: Joaquim Matias matias@ifae.es 34-670-570-708 Universitat Autonoma de Barcelona
If the findings are confirmed, this will be the first direct proof of New Physics, a more general theory than the current Standard Model of elementary particles
The Standard Model, which has given the most complete explanation up to now of the universe, has gaps, and is unable to explain phenomena like dark matter or gravitational interaction between particles. Physicists are therefore seeking a more fundamental theory that they call "New Physics", but up to now there has been no direct proof of its existence, only indirect observation of dark matter, as deduced, among other things, from the movement of the galaxies.
A team of physicists formed by the professor of Physics at Universitat Autnoma de Barcelona (UAB) Joaquim Matias, Javier Virto, postdoctoral researcher at the same university, and Sebastien Descotes Genon, from the Centre National de la Recherche Scientifique (CNRS) / Universit Paris-Sud, has predicted that New Physics would implie the existence of deviations in the probability of a very specific decay of a particle, the B meson. Detecting these small deviations through an experiment would be the first direct proof of the existence of this fundamental theory.
On 19 July of this year, at the EPS 2013 international conference on particle physics in Stockholm, scientists at the LHCb detector, one of the large experiments being conducted by the CERN's LHC accelerator, presented the results of the experimental measurements of the B meson decay. The measurements showed deviations with respect to the predictions of the Standard Model that were previously calculated by UAB and CNRS researchers. The team of scientists have prooved that all these deviations show a coherent pattern and that has allowed them to identify their oringin from a unique source.
The results of their analysis point to a deviation from the Standard Model prediction of 4.5 sigmas. If confirmed, this is a major event, since scientists regard 3 sigmas as "scientific proof" of New Physics and 5 sigmas as a "discovery".
"We must be prudent, because more studies and more experimental measurements will be needed for confirmation", explains Joaquim Matias, "but if they are confirmed this is the first direct proof of New Physics, a more general theory than the current Standard Model". "If the Higgs completed the Standard Model puzzle, these findings could be the first piece in an even bigger puzzle, adds Dr Matias.
The researchers claim that one of the New Physics models that could explain these results would be the one that postulates the existence of a new particle named Zprima, "but there could be lots of compatible models", points out Dr Matias.
The findings are so interesting that scientists at the other main LHC experiment, the CMS detector, want to take these measurements. The CMS has invited Dr. Matias to explain the theoretical details in a seminar to see it the results can be corroborated. At the same time, LHCb is also adding new data to improve the statistics and confirm the measurements next March.
Also participating in the study were Javier Virto, from the UAB's Department of Physics, and Sebastien Descotes-Genon from the University of Paris-Sud 11.
Beyond the Standard Model
For years, particle physicists have known that the theory they use, the Standard Model, despite being a very successful model in all tests carried out so far, has significant deficiencies such as lack of a candidate for dark matter. In addition, it has other problems such as the so-called fundamental problem of hierarchies or the matter-antimatter asymmetry of the universe.
Two of the central goals of the Large Hadron Collider (LHC) at CERN (Geneva) are finding the Higgs boson and finding what is called New Physics, a more fundamental and general theory than that of the Standard Model in which the latter would be just one particular case. Just a year ago, the Higgs boson was discovered, but the particle seems to fit perfectly into the Standard Model and currently gives us no clues regarding New Physics.
Results presented in the EPS 2013 conference
At CERN there are four experiments, four large detectors (ATLAS, CMS, LHCb, and Alice) that record collisions between particles so that scientists can study their behaviour. The LHCb detector is designed to study the behaviour of quarks and what are known as rare decays, which are very infrequent.
On 19 July of this year, at EPS 2013, the European Physics Society's International Conference on Particle Physics, in Stockholm, Dr. Matias presented the theoretical predictions of his research team on one of these decays: that of a B meson, formed by a b quark and a d antiquark, into a pair of muons and a particle called K*. The UAB and CNRS researchers calculated and predicted how this decay should work and how it should change in different New Physics scenarios.
Shortly afterwards, an experimental physicist from the LHCb detector, Nicola Serra, presented at the same conference the first completed experimental results of that decay. Surprisingly, the experimental measurements were consistent with the deviations predicted by Joaquim Matias and his collaborators. For the first time, deviations of this type were consistent with theoretical predictions based on the presence of contributions that transcends the Standard Model.
###
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.